Tutorial-Articles: The Importance of Data and Code Sharing

Main Article Content

Henrique Castro Martins
https://orcid.org/0000-0002-3186-4245 orcid


Context: this document is designed to be along with those that are in the first edition of the new section of the Journal of Contemporary Administration (RAC): the tutorial-articles section. Objective: the purpose is to present the new section and discuss relevant topics of tutorial-articles. Method: I divide the document into three main parts. First, I provide a summary of the state of the art in open data and open code at the current date that, jointly, create the context for tutorial-articles. Second, I provide some guidance to the future of the section on tutorial-articles, providing a structure and some insights that can be developed in the future. Third, I offer a short R script to show examples of open data that, I believe, can be used in the future in tutorial-articles, but also in innovative empirical studies. Conclusion: finally, I provide a short description of the first tutorial-articles accepted for publication in this current RAC’s edition.


Download data is not yet available.

Article Details

How to Cite
Martins, H. C. (2020). Tutorial-Articles: The Importance of Data and Code Sharing. Journal of Contemporary Administration, 25(1), e200212. https://doi.org/10.1590/1982-7849rac2021200212
Associate Editor Letter


Aguinis, H., Banks, G. C., Rogelberg, S. G., & Cascio, W. F. (2020). Actionable recommendations for narrowing the science-practice gap in open science. Organizational Behavior and Human Decision Processes, 158, 27-35. https://doi.org/10.1016/j.obhdp.2020.02.007
Aguinis, H., Cascio, W. F. & Ramani, R. S. (2017). Science’s reproducibility and replicability crisis: International business is not immune. Journal of International Business Studies, 48, 653–663. https://doi.org/10.1057/s41267-017-0081-0
Babin, B. J., Ortinau, D. J., Herrmann, J. L., & Lopez, C. (2020). Science is about corroborating empirical evidence, even in academic business research journals. Journal of Business Research. https://doi.org/10.1016/j.jbusres.2020.06.002
Baker, S. R., Bloom, N., & Davis, S. J. (2016). Measuring economic policy uncertainty. The Quarterly Journal of Economics, 131(4), 1593-1636. https://doi.org/10.1093/qje/qjw024
Banks, G. C., Field, J. G., Oswald, F. L., O’Boyle, E. H., Landis, R. S., Rupp, D. E., & Rogelberg, S. G. (2019). Answers to 18 questions about open science practices. Journal of Business and Psychology, 34(3), 257-270. https://doi.org/10.1007/s10869-018-9547-8
Barboza, R. de M., & Vasconcelos, G. F. R. (2019). Measuring the aggregate effects of the Brazilian Development Bank on investment. The North American Journal of Economics and Finance, 47, 223-236. https://doi.org/10.1016/j.najef.2018.12.013
Begenau, J., Farboodi, M., & Veldkamp, L. (2018). Big data in finance and the growth of large firms. Journal of Monetary Economics, 97, 71-87. https://doi.org/10.1016/j.jmoneco.2018.05.01
Beugelsdijk, S., Van Witteloostuijn, A., & Meyer, K. E. (2020). A new approach to data access and research transparency (DART). Journal of International Business Studies, 51, 887–905. https://doi.org/10.1057/s41267-020-00323-z
Bhimani, A., & Willcocks, L. (2014). Digitisation, ‘big data’ and the transformation of accounting information. Accounting and Business Research, 44(4), 469-490. https://doi.org/10.1080/00014788.2014.910051
Campoli, J. S., Alves Júnior, P. N., Rossato, F. G. F. D. S., & Rebelatto, D. A. D. N. (2020). The efficiency of bolsa familia program to advance toward the millennium development goals (MDGs): A human development indicator to Brazil. Socio-Economic Planning Sciences, 71(C). https://doi.org/10.1016/j.seps.2019.100748
Carrière‐Swallow, Y., & Labbé, F. (2013). Nowcasting with google trends in an emerging market. Journal of Forecasting, 32(4), 289-298. https://doi.org/10.1002/for.1252
Costa, P., Speranza, T., & Costa, J. (2018). Brazilian Economic Time Series (Package ‘BETS’; Version 0.4.9) [Package]. Retrieved from https://github.com/nmecsys/BETS
Drachen, T. M., & Ellegaard, O., Larsen, A. V., & Dorch, S. B. F. (2016). Sharing data increases citations. LIBER Quarterly, 26(2), 67–82. http://doi.org/10.18352/lq.10149
European Research Council. (2019). Open research data and data management plans: Information for ERC grantees. Retrieved from https://erc.europa.eu/sites/default/files/document/file/ERC_info_document-Open_Research_Data_and_Data_Management_Plans.pdf
Fane, B., Ayris, P., Hahnel, M., Hrynaszkiewicz, I., Baynes, G., & Farrell, E. (2019): The state of open data report 2019. Digital Science. https://doi.org/10.6084/m9.figshare.9980783.v2
Go Fair. (2016). FAIR principles. Retrieved from https://www.go-fair.org/fair-principles/
Harvard Dataverse. (2020). Journal of Contemporary Administration dataverse. Retrieved from https://dataverse.harvard.edu/dataverse/rac
Harvey, C. R. (2017). Presidential address: The scientific outlook in financial economics. The Journal of Finance, 72(4), 1399-1440. https://doi.org/10.1111/jofi.12530
Hax, A. C., & Majluf, N. S. (1982). Competitive cost dynamics: The experience curve. INFORMS Journal on Applied Analytics, 12(5), 50-61. http://dx.doi.org/10.1287/inte.12.5.50
Kaggle (2020). Datasets. Retrieved from https://www.kaggle.com/datasets
Kousta, S., Pastrana, E., & Swaminathan, S. (2019). Three approaches to support reproducible research. Science Editor, 42(3) 77-82. Retrieved from https://www.csescienceeditor.org/article/three-approaches-to-support-reproducible-research/
Lanka, E., Lanka, S., Rostron, A., & Singh, P. (2019). Research methods in qualitative management research. Zenodo. http://doi.org/10.5281/zenodo.3934265
Lopes, H. E. G., & Gosling, M. S. (2021). Cluster analysis in practice: Dealing with outliers in managerial research. RAC – Revista de Administração Contemporânea, 25(1), e200081. https://doi.org/10.1590/1982-7849rac2021200081
Marques, N. L., Bastian-Pinto, C. L., & Brandão, L. E. T. (2021). A tutorial for modeling real options lattices from project cash flows. RAC – Revista de Administração Contemporânea, 25(1), e200093. https://doi.org/10.1590/1982-7849rac2021200093
Martins, H. C. (2020). Checklist evaluation for tutorial-articles: Clean code. Zenodo. http://doi.org/10.5281/zenodo.3785747
Martins, H. C., & Mendes-da-Silva, W. (2020). The new section of the Journal of Contemporary Administration: Tutorial articles. RAC – Revista de Administração Contemporânea, 24(3), 275-282. https://doi.org/10.1590/1982-7849rac2020200044
McKiernan, E. C., Bourne, P. E., Brown, C. T., Buck, S., Kenall, A., Lin, J., McDougall, D., Nosek, B. A., Ram, K., Soderberg, C. K., Spies, J. R., Thaney, K., Updegrove, A., Woo, K. H., & Yarkoni, T. (2016). Point of view: How open science helps researchers succeed. ELife, 5, e16800. https://doi.org/10.7554/eLife.16800
Mendes-Da-Silva, W., & Cerqueira Leal, C. (2020). Salami science in the age of open data: Déjà lu and accountability in management and business research. RAC – Revista de Administração Contemporânea, 25(1), e200194. https://doi.org/10.1590/1982-7849rac2021200194
Mendes-Da-Silva, W. (2019). Have we been transparent enough? Challenges in replicability and credibility in business research. RAC - Revista de Administração Contemporânea, 23(5), 1-6. https://doi.org/10.1590/1982-7849rac2019190306
Our World in Data (2020). Brazil. Retrieved from https://ourworldindata.org/country/brazil
Pampel, H., & Dallmeier-Tiessen, S. (2014). Open research data: From vision to practice. In S. Bartling, S. Friesike (Eds.), Opening science (pp. 213-224). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-00026-8_14
Paulo, F. L. L. de, & Camões, P. J. S. (2019). Dataset on ecological fiscal transfers and municipal protected areas in the state of Minas Gerais, Brazil. Data In Brief, 27, 104601. https://doi.org/10.1016/j.dib.2019.104601
Perlin, M. S., Mastella, M., Vancin, D. F., & Ramos, H. P. (2021). A GARCH tutorial with R. RAC - Revista de Administração Contemporânea, 25(1), e200088. https://doi.org/10.1590/1982-7849rac2021200088
Perlin, M. S., Kirch, G., & Vancin, D. (2019). Accessing financial reports and corporate events with GetDFPData. Brazilian Review of Finance, 17(3), 85-108. http://dx.doi.org/10.12660/rbfin.v17n3.2019.78654
Piwowar, H. A., & Vision, T. J. (2013). Data reuse and the open data citation advantage. PeerJ, e175. https://doi.org/10.7717/peerj.175
Rossoni, L., & Gonçalves, A. F. (2019). Board social capital and structure, ownership and financial variables of Brazilian companies: A three levels dataset integrating directors, board networks and firm characteristics. Data in Brief, 26, 104502. https://doi.org/10.1016/j.dib.2019.104502
Rossoni, L., Gonçalves, C. P., Silva, M. P. da., & Gonçalves, A. F. (2021). Mapping organizational culture schemas based on correlational class analysis: A tutorial. RAC - Revista de Administração Contemporânea, 25(1), e200096. https://doi.org/10.1590/1982-7849rac2021200096
Rousi, A. M., & Laakso, M. (2020). Journal research data sharing policies: A study of highly-cited journals in neuroscience, physics, and operations research. Scientometrics, 124, 131-152. https://doi.org/10.1007/s11192-020-03467-9
SAGE Research Methods. (2020). Datasets. Retrieved from https://methods.sagepub.com/datasets
Schiozer, R. F., Mourad, F. A., & Martins, T. C. (2021). A tutorial on the use of differences-in-differences in management, finance, and accounting. RAC - Revista de Administração Contemporânea, 25(1), e200067. https://doi.org/10.1590/1982-7849rac2021200067
Sheth, J., & Kellstadt, C. H. (2020). Next frontiers of research in data driven marketing: Will techniques keep up with data tsunami? Journal of Business Research. https://doi.org/10.1016/j.jbusres.2020.04.050
Spiegel, M. (2019). Replication? Do you even have access to the data? Critical Finance Review, 8(1-2), 11-13. https://doi.org/10.1561/104.00000079
The World Bank (2020). Indicators. Retrieved from https://data.worldbank.org/indicator
Vandewalle, P. (2012). Code sharing is associated with research impact in image processing. Computing in Science and Engineering, 14(4), 42–47. https://doi.org/10.1109/MCSE.2012.63
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg, N., Boiten, J.-W., Santos, L. B. S., Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T., Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A., Gray, A. J. G., Growth, P., Goble, C., Grethe, J. S., Heringa, J., Hoen, P. A. C., Hooft, R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-Serra, P., Roos, M., Schaik, R. van, Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn, G., Swertz, M. A., Thompson, M., Lei, J. V. D, Mulligen, E. van, Velterop, J., Waagmeester, A., Wittenburg, P., Wolstencroft, K., Zhao, J. & Mons, B. (2016). The FAIR guiding principles for scientific data management and stewardship. Scientific data, 3, 160018. https://doi.org/10.1038/sdata.2016.18