A Tutorial on the Generalized Method of Moments (GMM) in Finance

Main Article Content

Alan de Genaro
https://orcid.org/0000-0002-9839-6116 orcid
Paula Astorino
https://orcid.org/0000-0001-9811-146X orcid


Context: empirical problems in which the researcher is faced with a model that is partially specified. In these cases, the GMM method is the natural alternative for estimating the parameters of interest. Objective: the goal of this paper is to offer a tutorial that allows the researcher to understand both the theory and empirical aspects of the GMM method. Methods: we discuss the GMM concepts, forms of estimation, and limitations associated with the method. As a way of illustrating the method, we use two applications in the area of empirical finance. The first application is the estimation of the parameters of a consumption-based asset pricing models; the second is the estimation of the parameters of the evolution of the interest rate in continuous time. The data and codes in R are provided as online appendices. Conclusion: the GMM method can be used in problems where other methods such as maximum likelihood are not feasible, or even when the researcher wants to estimate a model partially specified.


Download data is not yet available.

Article Details

How to Cite
Genaro, A. de, & Astorino, P. (2022). A Tutorial on the Generalized Method of Moments (GMM) in Finance. Journal of Contemporary Administration, 26(Sup. 1), e210287. https://doi.org/10.1590/1982-7849rac2022210287.en
Methodological Articles


Amemiya, T. (1977). The maximum likelihood and nonlinear three-stage least squares estimator in the general nonlinear simultaneous equation model. Econometrica, 45(4), 955-968. https://doi.org/10.2307/1912684
Andrews, D. W. K. (1991). Heteroskedasticity and autocorrelation consistent covariance matrix estimation. Econometrica, 59(3), 817-858. https://doi.org/10.2307/2938229
Arellano, M., & Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. The Review of Economic Studies, 58(2), 277-297. https://doi.org/10.2307/2297968
Banz, R. (1981). The relationship between return and market value of common stocks. Journal of Financial Economics, 9, 3–18. https://doi.org/10.1016/0304-405X(81)90018-0
Brandt, M. W., & Santa-Clara, P. (2002). Simulated likelihood estimation of diffusions with an application to exchange rate dynamics in incomplete markets. Journal of Financial Economics, 63, 161–212. Retrieved from https://ideas.repec.org/a/eee/jfinec/v63y2002i2p161-210.html
Campbell, J. Y. (2018). Financial decisions and markets: A course in asset pricing. Princeton, NJ: Princeton University Press.
Cameron, A. C., & Trivedi, P. (2005). Microeconometrics: Methods and applications. New York: Cambridge University Press.
Chan, K. C., Karolyi, G. A., Longstaff, F. A., & Sanders A. B. (1992). An empirical comparison of alternative models of the short-term interest rate. Journal of Finance, 47(3), 1209-1227. https://doi.org/10.1111/j.1540-6261.1992.tb04011.x
Cochrane, J. (1996). A cross-sectional test of an investment-based asset pricing model. Journal of Political Economy, 104(3), 572-621. https://doi.org/10.1086/262034
Cox, J. C., Ingersoll, J. E., & Ross, S. A. (1985). A theory of the term structure of interest rates. Econometrica, 53(2), 385-407. https://doi.org/10.2307/1911242
Cysne, R. (2006). Equity-premium puzzle: Evidence from Brazilian data. Economia Aplicada, 10(2), 161-180. https://doi.org/10.1590/S1413-80502006000200001
Duffie, D., & Singleton, K. (1993). Simulated moments estimation of Markov models of asset prices. Econometrica, 61(4), 929-952. https://doi.org/10.2307/2951768
Gallant, A. R. (1977). Three-stage least-squares estimation for a system of simultaneous, nonlinear, implicit equations. Journal of Econometrics, 5(1), 71-88. https://doi.org/10.1016/0304-4076(77)90035-5
Genaro, A., & Avellaneda, M. (2018). Does the lending rate impact ETF’s prices? Brazilian Review of Econometrics, 38(2), 287-319. https://doi.org/10.12660/bre.v38n22018.31732
Hall, A. R. (2005). Generalized method of moments. Oxford, UK: Oxford University Press.
Hansen, L. P. (2013). Uncertainty outside and inside economic models. Retrieved from https://www.nobelprize.org/uploads/2018/06/hansen-lecture.pdf
Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica, 50(4), 1029-1054. https://doi.org/10.2307/1912775
Hansen, L. P., & Singleton, K. J. (1982). Generalized instrumental variables estimation of nonlinear rational expectations models. Econometrica, 50(5), 1269-1286. https://doi.org/10.2307/1911873
Hansen, L. P., Heaton, J., & Yaron, A. (1996). Finite-sample properties of some alternative GMM estimators. Journal of Business and Economic Statistics, 14(3), 262-280. https://doi.org/10.1080/07350015.1996.10524656
Issler, J. V., & Piqueira, N. S. (2000). Estimating relative risk aversion, the discount rate, and the intertemporal elasticity of substitution in consumption for Brazil using three types of utility function. Brazilian Review of Econometrics, 20(2), 201-239. https://doi.org/10.12660/bre.v20n22000.2758
Jagannathan, R., Skoulakis, G., & Wang, Z. (2002). Generalized methods of moments: Applications in finance. Journal of Business and Economic Statistics, 20(4), 470-481. https://doi.org/10.1198/073500102288618612
Lucas, R. E., Jr. (1978). Asset prices in an exchange economy. Econometrica, 46(6), 1429-1445. https://doi.org/10.2307/1913837
Martins, H. C. (2021). Tutorial-articles: The importance of data and code sharing. Revista de Administração Contemporânea, 25(1), e200212. https://doi.org/10.1590/1982-7849rac2021200212
McFadden, D. (1989). A method of simulated moments for estimation of discrete response models without numerical integration. Econometrica, 57(5), 995-1026. https://doi.org/10.2307/1913621
Mehra, R., & Prescott, E. C. (1985). The equity premium: A puzzle. Journal of Monetary Economics, 15(2), 145-161. https://doi.org/10.1016/0304-3932(85)90061-3
Nickell, S. (1981). Biases in dynamic models with fixed effects. Econometrica, 49(6), 1417–1426. https://doi.org/10.2307/1911408
Pedersen, A. R. (1995). A new approach to maximum likelihood estimation for stochastic differential equations based on discrete observations. Scandinavian Journal of Statistics, 22(1), 55–71. Retrieved from https://www.jstor.org/stable/4616340
Stock, J. H., Wright, J., & Yogo, M. (2002). A survey of weak instruments and weak identification in generalized method of moments. Journal of Business & Economic Statistics, 20(4), 518-529.
Verbeek, M. (2004). A guide to modern econometrics. Chichester, England: John Wiley & Sons