Proposta de um Modelo Hesitant Fuzzy Linguistic TOPSIS para Segmentação de Fornecedores



Artigo principal Conteúdo

William Viana Borges
Francisco Rodrigues Lima Junior
Jurandir Peinado
Luiz Cesar Ribeiro Carpinetti

Resumo

Objetivo: este estudo propõe um modelo hesitant fuzzy linguistic TOPSIS para segmentação de fornecedores baseado em critérios econômicos, ambientais e sociais. Proposta: o modelo classifica os fornecedores em uma matriz de segmentação considerando suas capacidades e a disposição para colaborar. Foi implementado usando Microsoft Excel© e aplicado em uma usina hidrelétrica. Dois funcionários da empresa escolheram um conjunto de critérios de segmentação, atribuíram pesos a estes critérios e avaliaram o desempenho de alguns fornecedores. A aplicação-piloto permitiu analisar o desempenho de seis fornecedores e classificá-los de acordo com 28 critérios. Os resultados da classificação foram endossados pelos decisores envolvidos. Conclusão: o modelo apresenta resultados consistentes e pode auxiliar gestores na elaboração de programas de desenvolvimento visando a melhorar o desempenho econômico, ambiental e social dos fornecedores. Também é capaz de apoiar decisões em grupo sob incerteza e hesitação, habilita o uso de expressões linguísticas e não limita a quantidade de critérios e alternativas.



Histórico de Downloads

Não há dados estatísticos.


Detalhes do artigo

Como Citar
Borges, W. V., Lima Junior, F. R., Peinado, J., & Carpinetti, L. C. R. (2021). Proposta de um Modelo Hesitant Fuzzy Linguistic TOPSIS para Segmentação de Fornecedores. Revista De Administração Contemporânea, e210133. https://doi.org/10.1590/1982-7849rac2022210133.en
Seção
Artigos Metodológicos

Referências

Akman, G. (2015). Evaluating suppliers to include green supplier development programs via fuzzy c-means and VIKOR methods. Computers & Industrial Engineering, 86(1), 69-82. https://doi.org/10.1016/j.cie.2014.10.013
Aloini, D., Dulmin, R., Mininno, V., & Zerbino, P. (2019). Leveraging procurement-related knowledge through a fuzzy-based DSS. Journal of Knowledge Management, 23(1), 1077-1104. https://doi.org/10.1108/JKM-10-2018-0614
Bai, C., Rezaei, J., & Sarkis, J. (2017). Multicriteria green supplier segmentation. IEEE Transactions on Automation Science and Engineering, 64(4), 515-528. https://doi.org/10.1109/TEM.2017.2723639
Beg, I., & Rashid, T. (2013). TOPSIS for hesitant fuzzy linguistic term sets. International Journal of Intelligent Systems, 28(1), 1162-1171. https://doi.org/10.1002/int.21623
Bemelmans, J., Voordijk, H., Vos, B., & Buter, J. (2012). Assessing buyer-supplier relationship management: Multiple case-study in the Dutch Construction Industry. Journal of Construction Engineering and Management, 138(1), 163–176. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000418
Bertrand, J. W. M., & Fransoo, J. (2002). Operations management research methodologies using quantitative modeling. International Journal of Operations and Production Management, 22(2), 241-264. https://doi.org/10.1108/01443570210414338
Bianchini, A., Benci, A., Pellgrini, M.P., & Rossi, J. (2019). Supply chain redesign for lead-time reduction through Kraljic purchasing portfolio and AHP integration. Benchmarking: An International Journal, 26(1), 1194-1209. https://doi.org/10.1108/BIJ-07-2018-0222
Borges, W. V., & Lima, F. R. Junior (2020). Modelos de suporte à decisão para segmentação de fornecedores: Uma revisão sistemática da literatura. Anais do Congresso Brasileiro de Engenharia de Produção (CONBREPRO), Ponta Grossa., PR, Brasil, 10. Retrieved from https://aprepro.org.br/conbrepro/2020/anais/arquivos/09252020_140959_5f6e2af7ae0a7.pdf
Boujelben, M. A. (2017). A unicriterion analysis based on the PROMETHEE principles for multicriteria ordered clustering. Omega, 69(1), 126-140. https://doi.org/10.1016/j.omega.2016.08.007
Che, Z. H. (2011). Clustering and selecting suppliers based on simulated annealing algorithms. Computers & Mathematics with Applications, 63(1), 228-238. https://doi.org/10.1016/j.camwa.2011.11.014
Day, M., Magnan, G. M., & Moeller, M. M. (2010). Evaluating the bases of supplier segmentation: A review and taxonomy. Industrial Marketing Management, 39(4), 625–639. https://doi.org/10.1016/j.indmarman.2009.06.001
Demir, L., Akpinar, M. E., Araz, C., & Ilgin, M. A. (2018). A green supplier evaluation system based on a new multi-criteria sorting method: VIKORSORT. Expert Systems with Applications, 114(1), 479-487. https://doi.org/10.1016/j.eswa.2018.07.071
Elkington, J. (2000). Cannibals with forks: The triple bottom line of 21st Century Business. Journal of Business Ethics, 23, 229–231. https://doi.org/10.1023/A:1006129603978
Guarnieri, P. (2015). Síntese dos principais critérios, métodos e subproblemas da seleção de fornecedores multicritério. Revista de Administração Contemporânea, 19(1), 1-25. https://doi.org/10.1590/1982-7849rac20151109
Haghighi, P. S., Morad, M., & Salahi, M. (2014). Supplier segmentation using fuzzy linguistic preference relations and fuzzy clustering. I. J. Intelligent Systems and Applications, 5(1), 76-82. https://doi.org/10.5815/IJISA.2014.05.08
Jharkharia, S., & Das, C. (2019). Low carbon supplier development: A fuzzy c-means and fuzzy formal concept analysis based analytical model. Benchmarking: An International Journal, 26(1), 73-96. https://doi.org/10.1108/BIJ-03-2018-0074
Kaur, H., & Singh, S. P. (2021). Multi-stage hybrid model for supplier selection and order allocation considering disruption risks and disruptive technologies. International Journal of Production Economics 231. https://doi.org/10.1016/j.ijpe.2020.107830
Lambert, D., & Schwieterman, M. (2012). Supplier relationship management as a macro business process. Supply Chain Management, 17(3), 337-352. https://doi.org/10.1108/13598541211227153
Lima, F. R. Junior, & Carpinetti, L. C. R. (2016). Combining SCOR® model and fuzzy TOPSIS for supplier evaluation and management. International Journal of Production Economics, 174(1), 128-141. https://doi.org/10.1016/j.ijpe.2016.01.023
Lima, F. R., Junior, Osiro, L., & Carpinetti, L. C. (2014). A comparison between Fuzzy AHP and Fuzzy TOPSIS methods to supplier selection. Applied Soft Computing, 21(1), 194-209. https://doi.org/10.1016/j.asoc.2014.03.014
Lo, S., & Sudjatmika, F. V. (2015). Solving multi-criteria supplier segmentation based on the modified FAHP for supply chain management: A case study. Soft Computing, 20(12), 4981-4990. https://doi.org/10.1007/s00500-015-1787-1
Magalhães, W.R. (2020). Proposição e aplicação de um modelo para priorização de risco baseado em FMEA e Hesitant Fuzzy-TOPSIS (Dissertation). Universidade Tecnológica Federal do Paraná, Curitiba, PR, Brasil.
Medeiros, M., & Ferreira, L. (2018). Development of a purchasing portfolio model: An empirical study in a Brazilian hospital. Journal Production Planning & Control, 29(7), 571-585. https://doi.org/10.1080/09537287.2018.1434912
Onar, S. C., Oztaysi, B., Kahraman, C. (2014). Strategic decision selection using hesitant fuzzy TOPSIS and interval type-2 fuzzy AHP: A case study. International Journal of Computational Intelligence Systems, 7)5), 1002-1021. https://doi.org/10.1080/18756891.2014.964011
Osiro, L., Lima, F. R. Junior, & Carpinetti, L. C. R. (2014). A fuzzy logic approach to supplier evaluation for development. International Journal of Production Economics, 153(1), 95-112. http://dx.doi.org/10.1016/j.ijpe.2014.02.009
Osiro, L., Lima, F. R. Junior, & Carpinetti, L. C. R. (2018). A group decision model based on quality function deployment and hesitant fuzzy for selecting supply chain sustainability metrics. Journal of Cleaner Production, 183(1), 964–978. https://doi.org/10.1016/j.jclepro.2018.02.197
Park, J., Shin, K., Chang, T., & Park, J. (2010). An integrative framework for supplier relationship management. Industrial Management & Data Systems, 110(4), 495-515. https://doi.org/10.1108/02635571011038990
Parkouhi, S. V., Ghadikolaei, A. S., & Lajimi, H. F. (2019). Resilient supplier selection and segmentation in grey environment. Journal of Cleaner Production, 207(1), 1123-1137. https://doi.org/10.1016/j.jclepro.2018.10.007
Pedroso, C. B., Tate, W. L., Silva, A. L. da, & Carpinetti, L. C. R. (2021). Supplier development adoption: A conceptual model for triple bottom line (TBL) outcomes. Journal of Cleaner Production 314. https://doi.org/10.1016/j.jclepro.2021.127886
Pelissari, R., Oliveira, M. C., Abackerli, A. J., Ben-Amor, S., & Assumpção, M. R. P. (2018). Techniques to model uncertain input data of multi-criteria decision-making problems: A literature review. Intl. Trans. in Op. Res 00, 1-37. https://doi.org/10.1111/itor.12598
Rashidi, K., Noorizadeh, A., Kannan, D., & Cullinane, K. (2020). Applying the triple bottom line in sustainable supplier selection: A meta-review of the state-of-the-art. Journal of Cleaner Production 269. https://doi.org/10.1016/j.jclepro.2020.122001
Restrepo, R., & Villegas, J. G. (2019). Supplier evaluation and classification in a Colombian motorcycle assembly company using data envelopment analysis. Academia Revista Latinoamericana de Administración, 32(2), 159-180. https://doi.org/10.1108/ARLA-04-2017-0107
Rezaei, J., & Lajimi, H. F. (2019). Segmenting supplies and suppliers: Bringing together the purchasing portfolio matrix and the supplier potential matrix. International Journal of Logistics Research and Applications, 22(4), 419-436. https://doi.org/10.1080/13675567.2018.1535649
Rezaei, J., & Ortt, R. (2013a). Multi-criteria supplier segmentation using a fuzzy preference relations based AHP. European Journal of Operational Research, 225(1), 75-84. https://doi.org/10.1016/j.ejor.2012.09.037
Rezaei, J., & Ortt, R. (2013b). Supplier segmentation using fuzzy logic. Industrial Marketing Management, 42(4), 507-517. https://doi.org/10.1016/j.indmarman.2013.03.003
Rezaei, J., Kadzinski, M., Vana, C., & Tavasszy, L. A. (2017) Embedding carbon impact assessment in multi-criteria supplier segmentation using ELECTRE TRI-rC. Annals of Operations Research. https://doi.org/10.1007/s10479-017-2454-y
Rezaei, J., Wang, J., & Tavasszy, L. (2015). Linking supplier development to supplier segmentation using Best Worst Method. Expert Systems with Applications, 42(23), 9152-9164. https://doi.org/10.1016/j.eswa.2015.07.073
Rodríguez, R. M., Martinez, L., & Herrera, F. (2012). Hesitant fuzzy linguistic term sets for decision making. IEEE Transactions on Fuzzy Systems, 20(1), 109-119. https://doi.org/10.1109/tfuzz.2011.2170076
Saltelli, A., Aleksankina, K., Becker, W., Fennell, P., Ferretti, F., Holst, N., & Wu, Q. (2019). Why so many published sensitivity analyses are false: A systematic review of sensitivity analysis practices. Environmental modelling & software, 114(1), 29-39. https://doi.org/10.1016/j.envsoft.2019.01.012
Santos, L. F. O. M., Osiro, L., & Lima, R. H. P. (2017). A model based on 2-tuple fuzzy linguistic representation and Analytic Hierarchy Process for supplier segmentation using qualitative and quantitative criteria. Expert Systems with Applications, 79(1), 53-64. https://doi.org/10.1016/j.eswa.2017.02.032
Segura, M., & Maroto, C. (2017). A multiple criteria supplier segmentation using outranking and value function methods. Expert Systems with Applications, 69(1), 87-100. https://doi.org/10.1016/j.eswa.2016.10.031
Seuring, S., & Muller, M. (2008). From a literature review to a conceptual framework for sustainable supply chain management. Journal of Cleaner Production, 16(15), 1699-1710. https://doi.org/10.1016/j.jclepro.2008.04.020
Torres-Ruiz, A., & Ravindran, R. (2018). Multiple criteria framework for the sustainability risk assessment of a supplier portfolio. Journal of Cleaner Production, 172(1), 4478-4493. https://doi.org/10.1016/j.jclepro.2017.10.304