Fatores para a Adoção da Teleconsulta no Brasil: Análise na Perspectiva dos Pacientes Durante a Pandemia de COVID-19



Artigo principal Conteúdo

Marcus Rodrigues Peixoto
Jorge Brantes Ferreira
Laís Oliveira

Resumo

Contexto: a teleconsulta, como ferramenta tecnológica, pode gerar maior acessibilidade a serviços de saúde de qualidade, além de servir para lidar com os desafios de recursos na indústria da saúde. Pode também ser particularmente relevante durante a pandemia de COVID-19, com o distanciamento social que demanda novas soluções tecnológicas para a oferta de serviços de qualidade com contato pessoal reduzido. Objetivo: o artigo propõe um modelo integrativo de aceitação de tecnologia para avaliar os fatores determinantes da adoção de teleconsulta pelos pacientes, alinhando construtos oriundos do modelo de aceitação de tecnologia com outros construtos, como prontidão tecnológica, confiança e autoeficácia. Métodos: uso de análises descritivas e modelagem de equações estruturais com dados dos questionários de 415 consumidores. Resultados: indicam relações significativas entre os construtos avaliados, com particular relevância nos efeitos da utilidade percebida, antecedida pela confiança e prontidão tecnológica, sobre atitude e intenção de uso da teleconsulta. Conclusão: os resultados fornecem achados úteis para organizações de saúde e reguladores públicos sobre a difusão da teleconsulta, indicando que o contexto desafiador da pandemia de COVID-19 pode estar impactando a intenção dos pacientes de adotar a teleconsulta no Brasil.



Histórico de Downloads

Não há dados estatísticos.


Detalhes do artigo

Como Citar
Peixoto, M. R., Ferreira, J. B., & Oliveira, L. (2021). Fatores para a Adoção da Teleconsulta no Brasil: Análise na Perspectiva dos Pacientes Durante a Pandemia de COVID-19. Revista De Administração Contemporânea, 26(2), e210063. https://doi.org/10.1590/1982-7849rac2022210063.en
Seção
Artigos Teórico-empíricos

Referências

Abdullah, F., Ward, R., & Ahmed, E. (2016) Investigating the influence of the most commonly used external variables of TAM on students’ perceived ease of use (PEOU) and perceived usefulness (PU) of e-portfolios. Computers in Human Behavior, 63, 75-90. https://doi.org/10.1016/j.chb.2016.05.014
Adjekum, A., Blasimme, A., & Vayena, E. (2018). Elements of trust in digital health systems: Scoping review. Journal of Medical Internet Research, 20(12), e11254. https://doi.org/10.2196/11254
Anderson, J. C., & Gerbing, D. W. (1988). Structural equation modeling in practice: A review and recommended two-step approach. Psychological Bulletin, 103(3), 411–423. https://doi.org/10.1037/0033-2909.103.3.411
Bandura, A. (1982). The assessment and predictive generality of self-percepts of efficacy. Journal of Behavior Therapy and Experimental Psychiatry, 13(3), 195-199. https://doi.org/10.1016/0005-7916(82)90004-0
Bashshur, R, Doarn, C. R., Frenk, J. M., Kvedar, J. C., & Woolliscroft, J. O. (2020). Telemedicine and the COVID-19 pandemic, lessons for the future. Telemedicine and e-Health, 26(5), 571-573. https://doi.org/10.1089/tmj.2020.29040.rb
Baudier, P., Kontradeva, G., Ammi, C., Chang, V., & Schiavone, F. (2021). Patients’ perceptions of teleconsultation during COVID-19: A cross-national study. Technological Forecasting & Social Change, 163, 120510. https://doi.org/10.1016/j.techfore.2020.120510
Beldad, A. D., & Hegner, S. M. (2018). Expanding the technology acceptance model with the inclusion of trust, social influence, and health valuation to determine the predictors of german users’ willingness to continue using a fitness app: A structural equation modeling approach. International Journal of Human–Computer Interaction, 34(9), 882-893. https://doi.org/10.1080/10447318.2017.1403220
Byrne, B. M. (2010). Structural equation modeling with AMOS: Basic concepts, applications and programming (2 ed.). New York: Routledge.
Caetano, R., Silva, A. B., Guedes, A. C. C. M., Paiva, C. C. N., Ribeiro, G. R., Santos, D. L., & Silva, R. M. (2020). Challenges and opportunities for telehealth during the COVID-19 pandemic:Ideas on spaces and initiatives in the Brazilian context. Cadernos de Saúde Pública, 36(5), e00088920. https://doi.org/10.1590/0102-311X00088920
Chauhan, S., & Jaiswal, M. (2017). A meta-analysis of e-health applications acceptance: Moderating impact of user types and e-health application types. Journal of Enterprise Information Management, 30(2), 295-319. https://doi.org/10.1108/JEIM-08-2015-0078
Chien, S-E., Chu, L., Lee, H.-H., Yang, C.-C., Lin, F.-H., Yang, P.-L., Wang, T.-M., & Yeh, S.-L. (2019). Age difference in perceived ease of use, curiosity, and implicit negative attitude toward robots. ACM Transactions on Human-Robot Interaction, 8(2), Article 9. https://doi.org/10.1145/3311788
Cilliers, L., Viljoen, K. L.-A., & Chinyamurindi, W. T. (2018). A study on students’ acceptance of mobile phone use to seek health information in South Africa. Health Information Management Journal, 47(2), 59-69. https://doi.org/10.1177/1833358317706185
Cimperman, M., Brencic, M. M., & Trkman, P. (2016). Analyzing older users’ home telehealth services acceptance behavior—applying an Extended UTAUT model. International Journal of Medical Informatics, 90, 22-31. https://doi.org/10.1016/j.ijmedinf.2016.03.002
Compeau, D. R., & Higgins, C. A. (1995). Computer self-efficacy: Development of a measure and initial test. MIS Quarterly, 19(2), 189-211. https://doi.org/10.2307/249688
Dario, C., Luisotto, E., Pozzo, E. D., Mancin, S., Aletras, V., Newman, S., Gubian, L., & Saccavini, C. (2016). Assessment of patients’ perception of telemedicine services using the service user technology acceptability questionnaire. International Journal of Integrated Care, 16(2), 13. https://doi.org/10.5334/ijic.2219
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340. https://doi.org/10.2307/249008
Davis, F. D. (1993). User acceptance of information technology: System characteristics, user perceptions and behavioral impacts. International Journal of Man-Machine Studies, 38(3), 475-487. https://doi.org/10.1006/imms.1993.1022
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003. Retrieved from https://www.jstor.org/stable/2632151
Dixon, R. F., Zisser, H., Layne, J. E., Barleen, N. A., Miller, D. P., Moloney, D. P., Majithia, A. R., Gabbay, R. A., & Riff, J. (2020). A virtual type 2 diabetes clinic using continuous glucose monitoring and endocrinology visits. Journal of Diabetes Science and Technology, 14(5), 908-911. https://doi.org/10.1177/1932296819888662
Fanta, G. B., & Pretorius, L. (2018). A conceptual framework for sustainable e-health implementation in resource-constrained settings. South African Journal of Industrial Engineering, 29(3), 132-147. https://dx.doi.org/10.7166/29-3-2055
Ferreira, J. B., Rocha, A., & Silva, J. F. (2014). Impacts of technology readiness on emotions and cognition in Brazil. Journal of Business Research, 67(5), 865-873. https://doi.org/10.1016/j.jbusres.2013.07.005
Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behavior: An introduction to theory and research. Reading, MA: Addison-Wesley Publishing.
Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.2307/3151312
Fox, G., & Connolly, R. (2018). Mobile health technology adoption across generations: Narrowing the digital divide. Information Systems Journal, 28(6), 995-1019. https://doi.org/10.1111/isj.12179
Geffen, D., Karahanna, E., & Straub, D.W. (2003). Trust and TAM in online shopping: An integrated model. MIS Quarterly, 27(1), 51-90. https://doi.org/10.2307/30036519
Gonçalves, A. A., Martins, C. H. F., Silva, S. L. F. de C., Cheng, C., Santos, R. L. S. dos S., & Oliveira, S. B. de. (2019). Impactos da implantação da telemedicina no tratamento e prevenção do câncer. Revista Ibérica de Sistemas e Tecnologias de Informação, 17, 222-230. Retrieved from https://www.proquest.com/openview/f8691ce6ac65f34e990cecf4f3761335/1.pdf?pq-origsite=gscholar&cbl=1006393
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2009). Multivariate data analysis (7 ed.). Upper Saddle River: Prentice-Hall.
Hirani, S. P., Rixon, L., Beynon, M., Cartwright, M., Cleanthous, S., Selva, A., Sanders, C., Newman, S. P. (2017). Quantifying beliefs regarding telehealth: Development of the whole systems demonstrator service user technology acceptability questionnaire. Journal of Telemedicine and Telecare, 23(4), 460-469. https://doi.org/10.1177/1357633x16649531
Holden, R. J., & Karsh, B.-T. (2010). The technology acceptance model: Its past and its future in health care. Journal of Biomedical Informatics, 43(1), 159-172. https://doi.org/10.1016/j.jbi.2009.07.002
Holt, K. A., Karnoe, A., Overgaard, D., Nielsen, S. E., Kayser, L., Roder, M. E., From, G. (2019). Differences in the level of electronic health literacy between users and nonusers of digital health services: An exploratory survey of a group of medical outpatients. Interactive Journal of Medical Research, 8(2), e8423. https://doi.org/10.2196/ijmr.8423
Hu, L.-T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling, 6(1), 1–55. https://doi.org/10.1080/10705519909540118
Huang, J-C. (2010). Remote health monitoring adoption model based on artificial neural networks. Expert Systems with Applications, 37(1), 307-314. https://doi.org/10.1016/j.eswa.2009.05.063
Huang, J-C. (2013). Innovative health care delivery system—A questionnaire survey to evaluate the influence of behavioral factors on individuals’ acceptance of telecare. Computers in Biology and Medicine, 43(4), 281-286. https://doi.org/10.1016/j.compbiomed.2012.12.011
Jennett, P., Jackson, A., Healy, T., Ho, K., Kazanjian, A., Woollard, R., Haydt, S., & Bates, J. (2003). A study of a rural community’s readiness for telehealth. Journal of Telemedicine and Telecare, 9(5), 259-263. https://doi.org/10.1258/135763303769211265
Jones, S. S., Rudin, R. S., Perry, T., & Shekelle, P. G. (2014). Health information technology: An updated systematic review with a focus on meaningful use. Annals of Internal Medicine, 160(1), 48-54. https://doi.org/10.7326/m13-1531
Kayser, L., Karnoe, A., Furstrand, D., Batterham, R., Christensen, K. B., Elseworth, G., & Osborne, R. H. (2018). A multidimensional tool based on the ehealth literacy framework: Development and initial validity testing of the ehealth literacy questionnaire (eHLQ). Journal of Medical Internet Research, 20(2), e36. https://doi.org/10.2196/jmir.8371
Kayser, L., Rossen, S., Karnoe, A., Elsworth, G., Vibe-Petersen, J., Christensen, J. F., Ried-Larsen, M., & Osborne, R. H. (2019). Development of the multidimensional readiness and enablement index for health technology (READHY) tool to measure individuals’ health technology readiness: Initial testing in a cancer rehabilitation setting. Journal of Medical Internet Research, 21(2), e10377. https://doi.org/10.2196/10377
Khalifa, M., & Shen, K. N. (2008). Explaining the adoption of transactional B2C mobile commerce. Journal of Enterprise Information Management, 21(2), 110-124. https://doi.org/10.1108/17410390810851372
Klaassen, B., Beijnum, B. J. F. V., & Hermens, H. J. (2016). Usability in telemedicine systems - A literature survey. International Journal of Medical Informatics, 93, 57-69. https://doi.org/10.1016/j.ijmedinf.2016.06.004
Kulviwat, S., Bruner, G. C., II, Kumar, A., Nasco, S. A., & Clark, T. (2007). Toward a unified theory of consumer acceptance technology. Psychology & Marketing, 24(12), 1059-1084. https://doi.org/10.1002/mar.20196
Kuo, T.-H. (2011). The antecedents of customer relationship in e-banking industry. Journal of Computer Information Systems, 51(3), 57-66. Retrieved from https://www.tandfonline.com/doi/abs/10.1080/08874417.2011.11645486
Kuo, K-M., Liu, C-F., & Ma, C-C. (2013). An investigation of the effect of nurses’ technology readiness on the acceptance of mobile electronic medical record systems. BMC Medical Informatics and Decision Making, 13, 88. https://doi.org/10.1186/1472-6947-13-88
Lam, S. Y., Chiang, J., & Parasuraman, A. (2008). The effects of the dimensions of technology readiness on technology acceptance: An empirical analysis. Journal of Interactive Marketing, 22(4), 19–39. https://doi.org/10.1002/dir.20119
Lanseng, E. J., & Andreassen, T. W. (2007). Electronic healthcare: A study of people’s readiness and attitude toward performing self-diagnosis. International Journal of Service Industry Management, 18(4), 394-417. https://doi.org/10.1108/09564230710778155
Lee, T.-M. (2005). The impact of perceptions of interactivity on customer trust and transaction intentions in mobile commerce. Journal of Electronic Commerce Research, 6(3), 165-180.
Lin, C-H., Shih, H-Y., & Sher, P. J. (2007). Integrating technology readiness into technology acceptance: The TRAM Model. Psychology & Marketing, 24(7), 641-657. https://doi.org/10.1002/mar.20177
Lin, J.-S. C., & Chang, H.-C. (2011). The role of technology readiness in self-service technology acceptance. Managing Service Quality: An International Journal, 21(4), 424-444. https://doi.org/10.1108/09604521111146289
Malaquias, R. F., & Hwang, Y. (2016). An empirical study on trust in mobile banking: A developing country perspective. Computers in Human Behavior, 54, 453-461. https://doi.org/10.1016/j.chb.2015.08.039
Mauco, K. L., Scott, R. E., & Mars, M. (2019). Development of an eHealth readiness assessment framework for Botswana and other developing countries: Interview study. JMIR Medical Informatics, 7(3), e12949. https://doi.org/10.2196%2F12949
Mayer, R. C., Davis, J. H., & Schoorman, D. (1995). An integrative model of organizational trust. Academy of Management Review, 20(3), 709-734. https://doi.org/10.2307/258792
Michel-Verkerke, M. B., Stegwee, R. A., & Spil, T. A. M. (2015). The six P’s of the next step in electronic patient records in the Netherlands. Health Policy and Technology, 4(2), 137-143.
Oliveira, W. K., Duarte, E., França, G. V. A., & Garcia, L. P. (2020). How Brazil can hold back COVID-19. Epidemiologia e Serviços de Saúde, 29(2), e2020044. https://doi.org/10.5123/S1679-49742020000200023
Or, C. K. L., & Karsh, B.-T. (2009). A systematic review of patient acceptance of consumer health information technology. Journal of the American Medical Informatics Association, 16(4), 550-560. https://doi.org/10.1197/jamia.M2888
Ouimet, A. G., Wagner, G., Raymond, L., & Pare, G. (2020). Investigating patients’ intention to continue using teleconsultation to anticipate postcrisis momentum: Survey study. Journal of Medical Internet Research, 22(11), e22081. https://doi.org/10.2196/22081
Parasuraman, A. (2000). Technology readiness index (TRI): A multiple-item scale to embrace new technologies. Journal of Service Research, 2(4), 307-320. https://doi.org/10.1177/109467050024001
Parasuraman, A., & Colby, C. L. (2015). An updated and streamlined technology readiness index: TRI 2.0. Journal of Service Research, 18(1), 59-74. https://doi.org/10.1177/1094670514539730
Podsakoff, P. M., & Organ, D. W. (1986). Self-reports in organizational research: Problems and prospects. Journal of Management, 12(4), 531–544. https://doi.org/10.1177/014920638601200408
Portnoy, J., Waller, M., & Elliot, T. (2020). Telemedicine in the era of COVID-19. The Journal of Allergy and Clinical Immunology: In Practice, 8(5), 1489-1491. https://doi.org/10.1016/j.jaip.2020.03.008
Quan, A. M. L., Stiell, I., Perry, J. J., Paradis, M., Brown, E., Gignac, J., Wilson, L., & Wilson, K. (2020). Mobile clinical decision tools among emergency department clinicians: Web-based survey and analytic data for evaluation of the Ottawa rules app. JMIR MHealth UHealth, 8(1), e15503. https://doi.org/10.2196/15503
Rahimpour, M., Lovell, N. H., Celler, B. G., & McCormick, J. (2008). Patients’ perceptions of a home telecare system. International Journal of Medical Informatics, 77(7), 486-498. https://doi.org/10.1016/j.ijmedinf.2007.10.006
Ramírez-Correa, P., Grandón, E. E., Ramírez-Santana, M., & Órdenes, L. B. (2019). Explaining the use of social network sites as seen by older adults: The enjoyment component of a hedonic information system. International Journal of Environmental Research and Public Health, 16(10), 1673. https://doi.org/10.3390%2Fijerph16101673
Ratchford, M., & Barnhart, M. (2012). Development and validation of the technology adoption propensity (TAP) index. Journal of Business Research, 65(8), 1209-1215. https://doi.org/10.1016/j.jbusres.2011.07.001
Reinares-Lara, E., Olarte-Pascual, C., Pelegrín-Borondo, J., & Pino, G. (2016). Nanoimplants that enhance human capabilities: A cognitive-affective approach to assess individuals’ acceptance of this controversial technology. Psychology & Marketing, 33(9), 704-712. https://doi.org/10.1002/mar.20911
Rogers, E. M. (2003). Diffusion of innovations (5 ed.). New York: Free Press.
Schoorman, F. D., Mayer, R. C., & Davis, J. H. (2007). An integrative model of organizational trust: Past, present and future. Academy of Management Review, 32(2), 344-354. https://doi.org/10.5465/amr.2007.24348410
Scott, R. E., & Mars, M. (2020). Response to Smith et al.: Telehealth for global emergencies: Implications for coronavirus disease 2019 (COVID-19). Journal of Telemedicine and Telecare, 26(6), 378-380. https://doi.org/10.1177/1357633X20932416
Sligo, J., Gauld, R., Roberts, V., & Villa, L. (2017) A literature review for large-scale health information system project planning, implementation and evaluation. International Journal of Medical Informatics, 97, 86-97. https://doi.org/10.1016/j.ijmedinf.2016.09.007
Smith, A. C., Thomas, E., Snoswell, C. L., Haydon, H., Mehrotra, A., Clemensen, J., & Caffery, L. J. (2020). Telehealth for global emergencies: Implications for coronavirus disease 2019 (COVID-19). Journal of Telemedicine and Telecare, 26(5), 309-313. https://doi.org/10.1177/1357633X20916567
Sun, Y., Wang, N., Guo, X., & Peng, Z. (2013). Understanding the acceptance of mobile health services: A comparison and integration of alternative models. Journal of Electronic Commerce Research, 14(2), 183-200. Retrieved from http://web.csulb.edu/journals/jecr/issues/20132/paper4.pdf
Tao, D., Wang, T., Wang, T., Zhang, T., Zhang, X., & Qu, X. (2020). A systematic review and meta-analysis of user acceptance of consumer-oriented health information technologies. Computers in Human Behavior, 104, 106147. https://doi.org/10.1016/j.chb.2019.09.023
Tavares, J., & Oliveira, T. (2016). Electronic health record patient portal adoption by health care consumers: An acceptance model and survey. Journal of Medical Internet Research, 18(3). https://doi.org/10.2196/jmir.5069
Tsai, C-H. (2014). Integrating social capital theory, social cognitive theory, and the technology acceptance model to explore a behavioral model of telehealth systems. International Journal of Environmental Research and Public Health, 11(5), 4905-4925. https://doi.org/10.3390%2Fijerph110504905
Velsen, L. V., Tabak, M., & Hermens, H. (2017). Measuring patient trust in telemedicine services: Development of a survey instrument and its validation for an anticoagulation web-service. International Journal of Medical Informatics, 97, 52-58. https://doi.org/10.1016/j.ijmedinf.2016.09.009
Venkatesh, V. (2000). Determinants of perceived ease of use: Integrating control, intrinsic motivation, and emotion into the technology acceptance model. Information Systems Research, 11(4), 342-365. Retrieved from https://www.jstor.org/stable/23011042
Venkatesh, V., & Davis, F. D. (1996). A model of the antecedents of perceived ease of use: Development and test. Decision Sciences, 27(3), 451-481. https://doi.org/10.1111/j.1540-5915.1996.tb00860.x
Yeo, K. J., Al-Ashwal, R. H. A., Handayani, L., & Lee, S. H. (2019). Healthcare receivers’ acceptance of telecardiology in Malaysia. Telkomnika, 17(3), 1128-1135. https://doi.org/10.12928/telkomnika.v17i3.12212
Yosser, I. M., Idrus, Z. B. S. S., & Ali, A. A. E. (2020). Technology readiness index 2.0 as predictors of e-health readiness among potential users: A case of conflict regions in Libya. Journal of Physics: Conference Series, 1529(3), 032009. https://doi.org/10.1088/1742-6596/1529/3/032009
Yun, E. K., & Park, H-A. (2010). Consumers’ disease information–seeking behaviour on the Internet in Korea. Journal of Clinical Nursing, 19(19-20), 2860-2868. https://doi.org/10.1111/j.1365-2702.2009.03187.x