Análise de Superfície de Resposta: Um Tutorial para Examinar Efeitos Lineares e Curvilíneos



Artigo principal Conteúdo

Antonio Carlos Rodrigues

Resumo

Contexto: a análise de superfície de resposta (RSA) é uma abordagem que permite examinar até que ponto combinações de duas variáveis preditivas se relacionam com uma variável de resultado. O método é particularmente interessante nos casos em que a (in)congruência entre as duas variáveis preditivas é uma consideração central do estudo. Objetivo: o propósito deste artigo é apresentar um tutorial sobre aplicação da RSA. Método: são fornecidos fundamentação conceitual do método e um exemplo ilustrativo, para que o leitor possa entender alguns dos princípios básicos da técnica. O público-alvo deste tutorial são pesquisadores que utilizam modelagem matemática, mas que ainda não estão familiarizados com o método. Resultados: a técnica apresenta grande potencial de aplicação em uma variedade de questões de pesquisa no campo da Administração. Conclusões: além de fornecer um tutorial para uso da técnica, demonstra-se sua relevância para os estudos que analisam congruência e incongruência entre os escores.



Histórico de Downloads

Não há dados estatísticos.


Detalhes do artigo

Como Citar
Rodrigues, A. C. (2021). Análise de Superfície de Resposta: Um Tutorial para Examinar Efeitos Lineares e Curvilíneos . Revista De Administração Contemporânea, 25(6), e200293. https://doi.org/10.1590/1982-7849rac2021200293.en
Seção
Artigos

Referências

Barranti, M., Carlson, E. N., & Côté, S. (2017). How to test questions about similarity in personality and social psychology research: Description and empirical demonstration of response surface analysis. Social Psychological and Personality Science, 8(4), 465–475. https://doi.org/10.1177/1948550617698204
Blau, P. M. (1964). Exchange and power in social life. New York, NY: John Wiley.
Brito, R. P., & Miguel, P. L. S. (2017). Power, governance, and value in collaboration: Differences between buyer and supplier perspectives. Journal of Supply Chain Management, 53(2), 61–87. https://doi.org/10.1111/jscm.12134
Caniëls, M. C. J., & Veld, M. (2019). Employee ambidexterity, high performance work systems and innovative work behaviour: How much balance do we need? International Journal of Human Resource Management, 30(4), 565-585. https://doi.org/10.1080/09585192.2016.1216881
Caniëls, M. C. J., Vos, F. G. S., Schiele, H., & Pulles, N. J. (2018). The effects of balanced and asymmetric dependence on supplier satisfaction: Identifying positive effects of dependency. Journal of Purchasing and Supply Management, 24(4), 343–351. https://doi.org/10.1016/j.pursup.2017.11.003
Casciaro, T., & Piskorski, M. J. (2005). Power imbalance, mutual dependence, and constraint absorption: A closer look at resource dependence theory. Administrative Science Quarterly, 50(2), 167–199. https://doi.org/10.2189/asqu.2005.50.2.167
Crook, T. R., Craighead, C. W., & Autry, C. W. (2017). Hold back or held back? The roles of constraint mitigation and exchange diffusion on power “nonuse” in buyer-supplier exchanges. Journal of Supply Chain Management, 53(2), 10–21. https://doi.org/10.1111/jscm.12135
Edwards, J. R. (2002). Alternatives to difference scores: Polynomial regression analysis and response surface methodology. In F. Drasgow & N. Schmitt (Eds.), Measuring and analyzing behavior in organizations: Advances in measurement and data analysis. Hoboken, NJ: Pfeiffer.
Edwards, J. R., & Parry, M. E. (1993). On the use of polynomial regression equations as an alternative to difference scores in organizational research. Academy of Management Journal, 36(6). https://doi.org/10.5465/256822
Emerson, R. M. (1976). Social exchange theory. Annual Review of Sociology, 2(1), 335–362. https://doi.org/10.1146/annurev.so.02.080176.002003
Gaski, J. F. (1984). The theory of power and conflict in channels of distribution. Journal of Marketing, 48(3), 9-29. https://doi.org/10.1177/002224298404800303
Griffith, D. A., Hoppner, J. J., Lee, H. S., & Schoenherr, T. (2017). The influence of the structure of interdependence on the response to inequity in buyer–supplier relationships. Journal of Marketing Research, 54(1), 124–137. https://doi.org/10.1509/jmr.13.0319
Gulati, R., & Sytch, M. (2007). Dependence asymmetry and joint dependence in interorganizational relationships: Effects of embeddedness on a manufacturer’s performance in procurement relationships. Administrative Science Quarterly, 52(1), 32–69. https://doi.org/10.2189/asqu.52.1.32
Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2014). Multivariate data analysis. Upper Saddle River: Pearson Education.
Hofer, A. R. (2015). Are we in this together? The Dynamics and performance implications of dependence asymmetry and joint dependence in logistics outsourcing relationships. Transportation Journal, 54(4), 438-472. https://doi.org/10.5325/transportationj.54.4.0438
Humberg, S., Nestler, S., & Back, M. D. (2019). Response surface analysis in personality and social psychology: Checklist and clarifications for the case of congruence hypotheses. Social Psychological and Personality Science, 10(3), 409–419. https://doi.org/10.1177/1948550618757600
Ireland, R. D., & Webb, J. W. (2007). A multi-theoretic perspective on trust and power in strategic supply chains. Journal of Operations Management, 25(2), 482–497. https://doi.org/10.1016/j.jom.2006.05.004
Hoppner, J., Griffith, D., & Yeo, C. (2014). The intertwined relationships of power, justice and dependence. European Journal of Marketing, 48(9/10), 1690–1708. https://doi.org/10.1108/EJM-03-2013-0147
Kim, S. K. (2003). A cross-national study of interdependence structure and distributor attitudes: The moderating effect of group orientation. International Journal of Research in Marketing, 20(2), 193–214. https://doi.org/10.1016/S0167-8116(03)00018-1
Kim, S. K., & Hsieh, P.-H. (2003). Interdependence and its consequences in distributor-supplier relationships: A distributor perspective through response surface approach. Journal of Marketing Research, 40(1), 101–112. https://doi.org/10.1509/jmkr.40.1.101.19130
Kumar, N., Scheer, L. K., & Steenkamp, J.-B. E. M. (1995). The effects of perceived interdependence on dealer attitudes. Journal of Marketing Research, 32(3), 348–356. https://doi.org/10.2307/3151986
Kumar, N., Scheer, L. K., & Steenkamp, J.-B. E. M. (1998). Interdependence, punitive capability, and the reciprocation of punitive actions in channel relationships. Journal of Marketing Research, 35(2), 225-235. https://doi.org/10.1177/002224379803500208
Lee, K., Woo, H.-G., & Joshi, K. (2017). Pro-innovation culture, ambidexterity and new product development performance: Polynomial regression and response surface analysis. European Management Journal, 35(2), 249-260. https://doi.org/10.1016/j.emj.2016.05.002
Leonidou, L. C., Talias, M. A., & Leonidou, C. N. (2008). Exercised power as a driver of trust and commitment in cross-border industrial buyer-seller relationships. Industrial Marketing Management, 37(1), 92–103. https://doi.org/10.1016/j.indmarman.2007.08.006
Nyaga, G. N., Lynch, D. F., Marshall, D., & Ambrose, E. (2013). Power asymmetry, adaptation and collaboration in dyadic relationships involving a powerful partner. Journal of Supply Chain Management, 49(3), 42–65. https://doi.org/10.1111/jscm.12011
Pfeffer, J., & Salancik, G. (1978). The external control of organizations: A resource dependence perspective. New York: Harper & Row.
Reimann, F., & Ketchen, D. J. (2017). Power in supply chain management. Journal of Supply Chain Management, 53(2), 3–9. https://doi.org/10.1111/jscm.12140
Reimann, F., Shen, P., & Kaufmann, L. (2017). Multimarket contact and the use of power in buyer–supplier relationships. Journal of Business Logistics, 38(1), 18–34. https://doi.org/10.1111/jbl.12155
Schönbrodt, F. D., & Humberg, S. (2020). An R package for response surface analysis (version 0.10.0). Retrieved from https://cran.r-project.org/package=RSA
Schönbrodt, F. D., Humberg, S., & Nestler, S. (2018). Testing similarity effects with dyadic response surface analysis. European Journal of Personality, 32(6), 627–641. https://doi.org/10.1002/per.2169
Shanock, L. R., Baran, B. E., Gentry, W. A., Pattison, S. C., & Heggestad, E. D. (2010). Polynomial regression with response surface analysis: A powerful approach for examining moderation and overcoming limitations of difference scores. Journal of Business and Psychology, 25(4), 543–554. https://doi.org/10.1007/s10869-010-9183-4
Tabachnick, B. G., & Fidell, L. S. (2012). Using multivariate statistics (6th ed.). Upper Saddle River: Prentice Hall.
Venkatesh, V., & Goyal, S. (2010). Expectation disconfirmation and technology adoption: Polynomial modeling and response surface analysis. MIS Quarterly, 34(2), 281-303. https://doi.org/10.2307/20721428
Zhang, C., Zhuang, G., Yang, Z., & Zhang, Y. (2017). Brand loyalty versus store loyalty: Consumers’ role in determining dependence structure of supplier–retailer dyads. Journal of Business-to-Business Marketing, 24(2), 139–160. https://doi.org/10.1080/1051712X.2017.1314127