Assessing Linear Models of Value Relevance: Do They Capture What They Should?
Main Article Content
Abstract
This study aimed to investigate the quality and impact of value relevance models of financial information using quantile regression (QR) compared to the ordinary least squares (OLS) methods. Following the principles and foundations of Ohlson (1995), Feltham and Ohlson (1995) and Ohlson and Kim (2015), it was possible to use a comparison parameter between models for evaluating the relevance of accounting information. Therefore, we applied two tests (A and B), with two models each as in Ohlson and Kim (2015), one with the dependent variable as net income in the following period and, second, as company market value in the current period. Given this theme, quantile regression showed to be more efficient and have less possibilities for estimation errors than OLS, at least under the strict conditions of this work. Therefore, we recommend the estimation of quantile regression in models that use accounting and financial information, since heteroscedasticity and outliers are commonly found in these types of data, and because this estimation method is less sensitive and more robust to such conditions typically displayed by the data of this research field.
Downloads
Download data is not yet available.
Download data is not yet available.
Article Details
How to Cite
Duarte, F. C. de L., Girão, L. F. de A. P., & Paulo, E. (1). Assessing Linear Models of Value Relevance: Do They Capture What They Should?. Journal of Contemporary Administration, 21(spe), 110-134. https://doi.org/10.1590/1982-7849rac2017160202
Section
Articles
Since mid-February of 2023, the authors retain the copyright relating to their article and grant the journal RAC, from ANPAD, the right of first publication, with the work simultaneously licensed under the Creative Commons Attribution 4.0 International license (CC BY 4.0), as stated in the article’s PDF document. This license provides that the article published can be shared (allows you to copy and redistribute the material in any medium or format) and adapted (allows you to remix, transform, and create from the material for any purpose, even commercial) by anyone.
After article acceptance, the authors must sign a Term of Authorization for Publication, which is sent to the authors by e-mail for electronic signature before publication.